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Abstract—One of the essential characteristics of the class of
decomposa-ble (spectral, scalar, generalized scalar and spectral,
A-scalar) operators is the transfer of spectral proprieties from
one operator to another using quasinilpotent equivalence ([14]).
The family of S-decomposable operators, although larger than
the class of decomposable operators studied in several papers
(about 40), preserves the most interesting properties of the class of
decomposable ope-rators. In this paper we make the link between
S-decomposable operators and spectral equivalence (respectively,
S-spectral equi-valence). As is known, for two decomposable
operators T1 and T2 which are spectral equivalent, the spectral
properties of T1 transfer to T2 (Theorems II.1, II.2, II.3 and
Consequence II.1, [14]). We prove that this fact remains partially
true for S-decomposable
operators, because these operators behave differently and dis-
tinctly with respect to spectral equivalence; in this case, the
spectral equivalence is not ”equivalent” to equality of spectral
maximal spaces XT1(F ) = XT2(F ); this equality involves only a
weaker property called S-spectral equivalence, which is natural
in this case.

To show the relevance and the necessity of studying the above
stated property for the family of S-decomposable operators, we
emphasize the consistency of this class, in the sense of how many
and varied are the subfamilies that compose it: the restrictions
and the quotients (with respect to an invariant subspace) of
decomposable (unitary, self-adjoint, normal, spectral (scalar),
genera-lized spectral (scalar), A-scalar, A-unitary) operators; the
perturbations and the direct sums composed by one decompos-
able operator and another operator; the subscalar (subnormal,
subdecomposable) operators are S-decomposable (practically, S-
scalar, S-normal), as restrictions of scalar (respectively, normal,
decomposable) operators. Putinar showed that the hiponormal
ope-rators are subscalar, hence S-decomposable. The quasinor-
mal operators (i.e. T commutes with T ∗T ), being subnormal, are
S-decomposable; for cosubnormal operators (i.e. T ∗ is subnor-
mal), the adjointable operators T ∗ are S-decomposable. Cesaro
operators are subscalar, hence S-scalar and S-decomposable;
the operators which admit scalar dilatations (extensions) (C.
Ionescu-Tulcea) or A-scalar dilatations (El. Stroescu) are S-
decomposable. In fact, Albrecht and Eschmeier showed that any
operator is the quotient of a restriction or the restriction of a
quotient of decomposable operators ([3]), thus any operator is
S-decomposable or similar to an S-decomposable operator.

AMS 2000 Mathematics Subject Classification: 47B47,
47B40. Keywords: decomposable (strongly decomposable);
S-decomposable (strongly S-decomposable); spectral
equivalence (S-spectral equivalence).

I. INTRODUCTION

Let X be a Banach space, let B(X) be the algebra of
all linear bounded operators on X and let C be the field of
complex numbers. An operator T ∈ B(X) is said to have the

single-valued extension proper-ty if for any analytic function
f : Df → X (where Df ⊂ C open) with (λI − T )f(λ) ≡ 0
it results that f(λ) ≡ 0 ([14], [18]).

For an operator T ∈ B(X) having the single-valued
extension proper-ty and for x ∈ X , we consider the set ρT (x)
of all elements λ0 ∈ C such that there is a X-valued analytic
function λ → x(λ) defined on a neighborhood of λ0 which
verifies (λI−T )x(λ) ≡ x; x(λ) is unique, ρT (x) is open and
ρ(T ) ⊂ ρT (x). We take σT (x) = {ρT (x) = C \ ρT (x) and

XT (F ) =
{
x ∈ X;σT (x) ⊂ F

}
,

where F ⊂ C is closed.
ρT (x) is called the local resolvent set of x with respect to T
and σT (x) is the local spectrum of x with respect to T .

If T ∈ B(X) and Y is a (closed) subspace of X invariant
to T , let us denote by T |Y the restriction of T to Y . In
what follows, by subspace of X we understand a closed linear
manifold of X . Recall that Y ⊂ X is a spectral maximal
space of T if it is an invariant subspace to T such that for
any other subspace Z of X , invariant to T , the inclusion
σ(T |Z) ⊂ σ(T |Y ) implies the inclusion Z ⊂ Y ([14]).

An operator T ∈ B(X) is decomposable if for any finite
open covering {Gi}ni=1 of σ(T ), there is a system {Yi}ni=1 of
spectral maximal spaces of T such that σ(T |Yi) ⊂ Gi (i =
1, 2, ..., n) and X = Y1+Y2+...+Yn ([14], [19]). An operator
T is strongly decomposable if T |Y is decomposable, for any
spectral maximal space Y of T .

In order to study the link between S-decomposable oper-
ators and spectral equivalence, we need several notions from
the theory of residually spectral decompositions brought up by
F.H. Vasilescu in [25], [26], [27].

An open set Ω ⊂ C is said to be a set of analytic uniqueness
for T ∈ B(X) if for any open set ω ⊂ Ω and any analytic
function f0 : ω → X satisfying the equation (λI −T )f0(λ) ≡
0, it follows that f0(λ) ≡ 0 in ω. For T ∈ B(X), there is
a unique maximal open set ΩT of analytic uniqueness (2.1.,
[25]). We denote by ST = {ΩT = C \ ΩT and call it the
analytic spectral residuum of T .
For x ∈ X , a point λ is in δT (x) if in a neighborhood Vλ of λ
there is at least an analytic function fx (called T - associated
to x) such that (µI − T )fx(µ) ≡ x, for all µ ∈ Vλ. We shall
put

γT (x) = {δT (x), ρT (x) = δT (x) ∩ ΩT ,

σT (x) = {ρT (x) = γT (x) ∪ ST
and

XT (F ) = {x ∈ X;σT (x) ⊂ F},
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where ST ⊂ F ⊂ C ([25]).

T ∈ B(X) has the single-valued extension property if and
only if ST = ∅; then we have σT (x) = γT (x) and there is in
ρT (x) = δT (x) a unique analytic function x(λ), T -associated
to x, for any x ∈ X . We shall recall that if T ∈ B(X), ST 6= ∅
and XT (F ) is closed, for F ⊂ C closed, ST ⊂ F , then XT (F )
is a spectral maximal space of T and σ(T |XT (F )) ⊂ F ([25],
Propositions 2.4 and 3.4).

II. PRELIMINARIES

Definition II.1. A finite family of open sets GS ∪{Gi}ni=1 is
said to be an S-covering of the closed set σ ⊂ C if

GS ∪

(
n⋃
i=1

Gi

)
⊃ σ∪S and Gi∩S = ∅ (i = 1, 2, ..., n)

(S ⊂ C also closed) ([25]).

Definition II.2. Let T ∈ B(X) and let S ⊂ σ(T ) be a compact
set. T is called S-decomposable (see also [11]) if for any finite
open S-covering GS ∪ {Gi}ni=1 of σ(T ), there is a system
YS ∪ {Yi}ni=1 of spectral maximal spaces of T such that

(i) σ(T |YS) ⊂ GS , σ(T |Yi) ⊂ Gi (i = 1, 2, . . . , n)

(ii) X = YS +
n∑
i=1

Yi.

T is strongly S-decomposable if the condition (ii) is replaced
by

(ii’) Z = (Z ∩ YS) +
n∑
i=1

(Z ∩ Yi)

where Z is any spectral maximal space of T and we shall say
that T is weakly S-decomposable if the same condition (ii) is
replaced by

(ii”) X = YS +

n∑
i=1

Yi.

If in the definition of S-decomposability, YS is not nec-
essarily a spectral maximal space of T and σ(T |YS) ⊂ G̃S ,
then we say that T ∈ DS (if A ⊂ C is bounded, we denote
Ã = C \ D∞, where D∞ is the unbounded component of
C \A).

An operator T ∈ B(X) is called (m,S)-decomposable if
in the defi-nition of S-decomposability we consider the S-
covering composed by exactly m+ 1 sets; if m = 1 we have
(1, S)-decomposability. Recall that T is S-decomposable if
and only if T is (1, S)-decomposable.

Definition II.3. We say that T1, T2 ∈ B(X) are spectral
equivalent (or quasi-nilpotent equivalent, see [14], Definition
2.1.) and write T1 ∼ T2, if

lim
n→∞

∥∥∥(T1 − T2)[n]
∥∥∥ 1
n

= 0 and lim
n→∞

∥∥∥(T2 − T1)[n]
∥∥∥ 1
n

= 0,

where

(T1 − T2)[n] =
n∑
k=0

(−1)n−k
(
n
k

)
T k1 T

n−k
2 .

This relation is reflexive, symmetric and transitive.

Theorem II.1. ([14]) Let T1, T2 ∈ B(X). If T1 ∼ T2, then
σ(T1) = σ(T2).

Theorem II.2. ([14]) Let T1, T2 ∈ B(X). If T1 has the single-
valued extension property and T1 ∼ T2, then T2 has also the
single-valued extension property and σT1

(x) = σT2
(x), for

every x ∈ X .

Theorem II.3. ([14]) If T1 ∈ B(X) is decomposable and T1 ∼
T2, then T2 ∈ B(X) is also decomposable and

XT1
(F ) = XT2

(F ), F ⊂ C closed.

Conversely, if T1, T2 ∈ B(X) are decomposable operators
such that XT1(F ) = XT2(F ), for every F ⊂ C closed, then
T1 ∼ T2.

Consequence II.1. ([14]) Let T1, T2 ∈ B(X) be decompos-
able operators. Then T1 is spectral equivalent with T2 if and
only if

XT1(F ) = XT2(F )

for every F ⊂ C closed.

III. S-DECOMPOSABLE OPERATORS SPECTRAL
EQUIVALENT

Definition III.1. Let T ∈ B(X) and let S ⊂ C be a compact
set. T is said to verify condition αS if XT (F ) is closed for
any closed F ⊃ S. T is also said to verify condition βS if for
any finite open S-covering GS ∪{Gi}ni=1 of σ(T ) and for any
x ∈ X we have

x = xS + x1 + x2 + ...+ xn

where

γT (xS) ⊂ GS , γT (xi) ⊂ Gi (i = 1, 2, ..., n) ([11], [26]).

T is said to verify strongly condition βS if for any spectral
maximal space Y of T , the restriction T |Y verifies condition
βS1

, where S1 = S ∩ σ(T |Y ).

Lemma III.1. An operator T ∈ B(X) is S-decomposable if
and only if it verifies conditions αS and βS .

Proof: Let GS ∪ {Gi}ni=1 be a finite open S-covering of
σ(T ). Since Gi ∩ S = ∅ (1 ≤ i ≤ n) we have

XT (Gi ∪ S) = Yi ⊕ YS
where XT (Gi ∪ S), Yi, YS are spectral maximal spaces of T
(see Propositions 2.4. and 3.4., [25]). Also, if Y is a spectral
maximal space of T we have δT |Y (x) ⊂ δT (x), for any x ∈ Y ,
hence γT (x) ⊂ γT |Y (x) ⊂ σ(T |Y ), for any x ∈ Y . If we
considering these remarks, our assertion is obvious.

Proposition III.1. Let T1, T2 ∈ B(X). If T1 is S-
decomposable with ST1 = ∅ (i.e. T1 has the single-valued
extension property; particularly dimS ≤ 1) and T1, T2 are
spectral equivalent, then T2 is also S-decomposable.

Proof: If T1, T2 are spectral equivalent, then

σ(T1) = σ(T2), σT1
(x) = σT2

(x), x ∈ X (ST1
= ∅ ⇒ ST2

= ∅)

and
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XT1
(F ) = XT2

(F )

for any F ⊂ C closed ([14]). Therefore T2 also verifies
conditions αS and βS , hence T2 is also S-decomposable.

Proposition III.2. Let T1, T2 ∈ B(X) with ST1
6= ∅, ST2

6= ∅.
If T1 is spectral equivalent with T2, then

γT1(x) = γT2(x),

for any x ∈ X .

Proof: We observe that the proof of this proposition is
similar to the proof of Theorem 2.4. ([14], Chapter 1) and we
present briefly the main steps. Let λ0 ∈ δT1

(x); then there is
an analytic function x1(λ) defined on a neighborhood ω of λ0

such that (λI − T1)x1(λ) ≡ x, for any λ ∈ ω.

Let ∆1 = {λ; |λ−λ0| ≤ r1} ⊂ ∆2 = {λ; |λ−λ0| < r2} ⊂
δT1

(x), with r1 < r2 and M = sup ‖x1(λ)‖ on {λ; |λ−λ0| =
r2}; then for λ ∈ ∆1 we have

∥∥∥∥∥x(n)
1 (λ)

n!

∥∥∥∥∥ =

∥∥∥∥∥ 1

2πi

∫
|µ−λ0|=r2

x1(µ)

(µ− λ)n+1
dµ

∥∥∥∥∥

≤ M · r2

(r2 − r1)n+1
.

From the fact that lim
n→∞

∥∥∥(T2 − T1)[n]
∥∥∥ 1
n

= 0, it results that
for every ε > 0, there is M(ε) > 0 such that

∥∥∥(T2 − T1)[n]
∥∥∥ < M(ε) · εn (n ≥ 0)

and by taking ε =
r2 − r1

2
we obtain

∥∥∥∥∥(T2 − T1)[n]x
(n)
1 (λ)

n!

∥∥∥∥∥ < r2 ·M ·M(ε)

r2 − r1
·
(

ε

r2 − r1

)n
≤ M

2n
,

hence the series x2(λ) =
∞∑
n=0

(−1)n(T2 − T1)[n]x
(n)
1 (λ)

n!
is ab-

solutely uniformly convergent in ∆1; therefore, ∆1 ⊂ δT1(x)
being arbitrary, it converges absolutely and uniformly in every
compact K ⊂ δT1

(x). It follows that x2(λ) is analytic on
δT1

(x) and we show that (λI − T2)x2(λ) ≡ x. If we take
the n-times derivative of the identity (λI − T1)x1(λ) ≡ x we
obtain

(λI − T1)x
(n)
1 (λ) ≡ −nx(n−1)

1 (λ)

and

(λI − T2)x2(λ) =
∞∑
n=0

(−1)n(λI − T2)(T2 − T1)[n]x
(n)
1 (λ)

n!
=

=
∞∑
n=0

(λI − T2)[(λI − T2)− (λI − T1)][n]x
(n)
1 (λ)

n!
=

=
∞∑
n=0

(−1)n+1(T2 − T1)[n+1]x
(n)
1 (λ)

n!
+ (λI − T1)x1(λ)−

−
∞∑
n=1

(−1)n(T2 − T1)[n]x
(n−1)
1 (λ)

(n− 1)!
=

=
∞∑
n=0

(−1)n+1(T2 − T1)[n+1]x
(n)
1 (λ)

n!
+ (λI − T1)x1(λ)−

−
∞∑
n=0

(−1)n+1(T2 − T1)[n+1]x
(n)
1 (λ)

n!
= (λI − T1)x1(λ) ≡ x,

i.e. δT1
(x) ⊂ δT2

(x). In a similar way, we will show that
δT2

(x) ⊂ δT1
(x), thus δT1

(x) = δT2
(x) and γT1

(x) = γT2
(x).

Theorem III.1. Let T1, T2 ∈ B(X) be two operators spectral
equivalent. Then the analytic spectral residuum of T1 is equal
to the analytic spectral residuum of T2, i.e. ST1

= ST2
.

Proof: Let f : ω → X be an analytic function that verifies
the property (λI −T2)f(λ) ≡ 0, where ω ⊂ ΩT1 . Then (T1−
T2)[n]f(λ) = (T1 − λI)nf(λ), because (λI − T2)pf(λ) ≡ 0
for p ≥ 1 and

(T1 − T2)[n]f(λ) = [(T1 − λI)− (T2 − λI)][n]f(λ) =
n∑
k=0

(−1)n−k
(
n
k

)
(T1 − λI)k(T2 − λI)n−kf(λ) = (T1 − λI)nf(λ).

By the Cauchy’s root criterion, the series S =
∞∑
n=0

(T1 − T2)[n](µ− λ)−n−1 is absolutely convergent in the

uniform topology of B(X), for every µ 6= λ, because

lim
n→∞

(∥∥(T1 − T2)[n]
∥∥

|µ− λ|n+1

) 1
n

= lim
n→∞

∥∥(T1 − T2)[n]
∥∥ 1
n

|µ− λ|
=

0

|µ− λ|
= 0.

According to relations (4.8.4.) and (5.2.3.) ([23]) we have

R(µ, T1) =
∞∑
n=0

(T1 − λI)n(µ− λ)−n−1

for every µ such that |µ− λ| > ‖T1 − λI‖, therefore

(µI − T1)

( ∞∑
n=0

(T1 − T2)[n]

(µ− λ)n+1

)
f(λ) =

(µI − T1)

( ∞∑
n=0

(T1 − λI)n

(µ− λ)n+1

)
f(λ) =

= (µI − T1)R(µ, T1)f(λ) = f(λ), for any |µ− λ| > ‖T1 − λI‖.
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It follows that the analytic function (in C \ {λ} = {{λ})

gλ(µ) = Sf(λ) =
∞∑
n=0

(T1 − T2)[n](µ− λ)−n−1f(λ)

verifies the relation

(µI − T1)gλ(µ) = f(λ) (α)

on a open set {µ; |µ − λ‖ > ‖T1 − λI‖} and, by analytic
extension, for every µ 6= λ. Thus {{λ} ⊂ δT1

(f(λ)), i.e.
γT1

(f(λ)) ⊂ {λ}.

Now we have to show that γT1(f(λ)) = ∅. Let λ0 ∈ ω,
ω0 = {λ ∈ C; |λ − λ0| ≤ r0} ⊂ ω and λ, µ ∈ Intω0. By
integrating the identity (α) we find

(µI−T1)
1

2πi

∫
|ξ−λ0|=r0

gξ(µ)

ξ − λ
dξ =

1

2πi

∫
|ξ−λ0|=r0

f(ξ)

ξ − λ
dξ = f(λ)

(µ −→ 1

2πi

∫
|ξ−λ0|=r0

gξ(µ)

ξ − λ
dξ is analytic on ω0).

We obviously have Intω0 = {µ ∈ C; |µ − λ0| < r0} ⊂
δT1

(f(λ)), so {λ} ⊂ δT1
(f(λ)).

It results that γT1
(f(λ)) ⊂ {{λ}, therefore γT1

(f(λ)) ⊂ {λ}∩
{{λ} = ∅. Then we have f(λ) ≡ 0 on ω, so ΩT1 ⊂ ΩT2 . In a
similar way, we prove that ΩT2 ⊂ ΩT1 , hence ST1 = ST2 .

Theorem III.2. Let T1, T2 ∈ B(X). If T1 is S-decomposable
and T1 ∼ T2, then T2 is also S-decomposable and

XT1
(F ) = XT2

(F ),

for every closed F ⊂ C, F ⊃ S.

Proof: According to the previous propositions, we have
ST1

= ST2
, γT1

(x)
= γT2

(x), σT1
(x) = σT2

(x), for any x ∈ X , XT1
(F ) =

XT2
(F ), for any closed F ⊂ C, F ⊃ S. Therefore T2 also

verifies conditions αS and βS . Then T2 is S-decomposable.

Proposition III.3. Let T ∈ B(X) and let σ be a separated
part of σ(T ). Let

E(σ, T ) =
1

2πi

∫
Γ

R(λ, T ) dλ

be the spectral projection corresponding to σ ([18], VII p.3)
(where Γ is a system of curves containing in ρ(T ) and
surrounding σ). Then E(σ, T )X is a spectral maximal space
of T and σ(T |E(σ, T )X) = σ.

Proof: The proof is presented in 1.3.10., [23].

Proposition III.4. Let T ∈ B(X) be S-decomposable and let
F be a closed set, F ⊂ C, F ∩S = ∅. Then the space YF from
the equality

XT (S ∪ F ) = XT (S)⊕ YF

given by

YF = E(F, T |XT (S ∪ F ))XT (S ∪ F )

is spectral maximal space of T and σ(T |YF ) ⊂ F , where
E(F, T |XT (S ∪ F )) is one of the previous proposition.

Proof: Because XT (S ∪ F ) is a spectral maximal space
of T and YF , according to previous proposition, it is a spectral
maximal space of T |XT (S ∪ F ) and it results that YF is
spectral maximal space of T .

Proposition III.5. Let T1, T2 ∈ B(X) be two S-
decomposable operators enjoying the same spectral maximal
spaces, XT1(F ) = XT2(F ), for any F ⊃ S closed. Then the
spectra of T1 and T2 are equal, σ(T1) = σ(T2).

Proof: ST1 ⊂ S, ST2 ⊂ S, XT1(σ(T1)) = X =
XT2(σ(T2)), so we have:

σ(T1) = σ(T1|X) = σ(T1|XT2
(σ(T2)))

= σ(T1|XT1
(σ(T2))) ⊂ σ(T2)

σ(T2) = σ(T2|X) = σ(T2|XT1(σ(T1)))

= σ(T2|XT2
(σ(T1))) ⊂ σ(T1).

Proposition III.6. An operator T ∈ B(X) is strongly S-
decomposable if and only if T |Y is strongly S1-decomposable
for any spectral maximal space Y of T, where S1 = S ∩
σ(T |Y ). Particularly, if σ(T |Y )∩S = ∅, then T |Y is strongly
decomposable (see 2.6.3., 2.6.4., 2.6.5., [12]).

Definition III.2. Let T ∈ B(X) and let σ ⊂ σ(T ) be a
compact set. σ is a set-spectrum for T if there is an invariant
subspace Y to T such that σ(T |Y ) = σ.

Proposition III.7. Let T ∈ B(X) be S-decomposable and let
σ ⊂ σ(T ) such that σ = Intσ (in the topology of σ(T )),
with σ ∩ S = ∅ or σ ⊃ S. Then σ and σ′ = σ(T ) \ σ are
sets-spectrum for T and

σ(T |Yσ) = σ, σ(T |XT (σ′)) = σ′ or
σ(T |Yσ′) = σ′, σ(T |XT (σ)) = σ

(XT (S ∪ σ) = XT (S)⊕ Yσ or XT (S ∪ σ′) = XT (S)⊕ Yσ′ ,
σ′ ∩ S = ∅).

Proof: The proof of these assertions is similar to the proof
from the case of decomposable operators ([12], Proposition
1.3.2.).

Proposition III.8. According to the previous proposition, it
results that an operator T ∈ B(X) is S-decomposable if and
only if there is a system YS ∪ {Yi}ni=1 of spectral maximal
spaces of T such that

σ(T |YS) = GS , σ(T |Yi) = Gi (i = 1, 2, ..., n),

X = YS + Y1 + Y2 + ...+ Yn,

for any open finite S-covering GS ∪ {Gi}ni=1 of σ(T ), where
Gi, GS ⊂ σ(T ) are open (i = 1, 2, ..., n).

Proof: Indeed, if G′S∪{G′i}ni=1 is a finite open S-covering
of σ(T ) and Y ′S∪{Y ′i }ni=1 is a corresponding system of spectral
maximal spaces of T such that

σ(T |Y ′S) ⊂ G′S , σ(T |Y ′i ) ⊂ G′i (i = 1, 2, ..., n),

X = Y ′S + Y ′1 + Y ′2 + ...+ Y ′n,
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then

GS = G′S ∩ σ(T ), Gi = G′i ∩ σ(T ) (i = 1, 2, ..., n)

are sets-spectrum for T and

YS = XT (GS), XT (S ∪Gi) = XT (S) + YGi

YS , YGi
= Yi being spectral maximal spaces of T with

σ(T |YS) = GS , σ(T |Yi) = Gi.
But

σ(T |Y ′S) ⊂ G′S ∩ σ(T ) ⊂ GS = σ(T |YS)

σ(T |Y ′i ) ⊂ G′i ∩ σ(T ) ⊂ Gi = σ(T |Yi) (i = 1, 2, ..., n)

hence Y ′S ⊆ YS , Y ′i ⊆ Yi (i = 1, 2, ..., n) and X = Y ′S +Y ′1 +
Y ′2 + ...+ Y ′n ⊆ YS + Y1 + Y2 + ...+ Yn = X . Conversely is
obvious.

For the case of decomposable operators, according to
Theorem II.3 and Consequence II.1, two operators T1, T2 ∈
B(X) are spectral equivalent, T1 ∼ T2, if and only if the
spectral maximal spaces XT1

(F ), XT2
(F ) are equal, for any

F ⊂ C closed. This fact seems not be true in the case of S-
decomposable operators; according to Theorem III.2, the spec-
tral equivalence transfers the property of S-decomposability
from one operator to another and the equality of the spectral
spaces, XT1(F ) = XT2(F ); but conversely, the equality of the
spectral spaces does not really involve the spectral equivalence.
Using direct sums composed by one decomposable operator
and two operators which are not spectral equivalent, it can be
created several examples in this sense.

Because we want also to fit these cases into a coherent
theory, let us impose the concept of S-spectral equivalence
(residually spectral equivalence or spectral equivalence mod-
ulo S).

Definition III.3. Let T1, T2 ∈ B(X) be S-decomposable with
σ(T1) = σ(T2). We say that T1, T2 are S-spectral equivalent
if for any spectral maximal space Y of T1 (or T2), with
σ(T1|Y )∩ S = ∅ (or σ(T2|Y )∩ S = ∅), the restrictions T1|Y
and T2|Y are spectral equivalent.

Theorem III.3. Let T1, T2 ∈ B(X) be strongly S-
decomposable and XT1(F ) = XT2(F ), for any F ⊃ S closed.
Then T1 and T2 are S-spectral equivalent.

Proof: According to Proposition III.5, because the spectral
spaces XT1(F ), XT2(F ) are equal, for any F ⊃ S closed, it
results that σ(T1) = σ(T2).

We observe that any spectral maximal space Y of T1 with
the spectrum σ(T1|Y ) ∩ S = ∅ is given by the relations

XT1
(S ∪ σ) = XT1

(S) + Yσ, Y = Yσ, σ = σ(T1|Y )

and it is also a spectral maximal space of T2.

We recall that a spectral maximal space Y1 of T |Y , where
Y is spectral maximal space of T , is also a spectral maximal
space of T .

T1, T2 being strongly S-decomposable, than the restrictions
T1|Y and T2|Y are decomposable and, from Theorem III.2
(see also Preliminaries and Theorem II.3), are also spectral
equivalent, hence T1 and T2 are S-spectral equivalent.

Corollary III.1. Let T1, T2 ∈ B(X). If T1 is strongly S-
decomposable and T1 is spectral equivalent with T2, then T2

is also strongly S-decomposable.

Proof: According to Theorem III.2, T2 is S-decomposable
and the spectral maximal spaces XT1

(F ), XT2
(F ) are equal,

with F ⊃ S closed; it follows that any spectral maximal space
Y of T1, with σ(T1|Y ) ∩ S = ∅, is also a spectral maximal
space of T2 (see Proposition III.4)
(XT1(S ∪ σ(T1|Y )) = XT2(S ∪ σ(T1|Y )) = XT1(S) + Y =
XT2(S) + Y ).

Because T1|Y is decomposable (Proposition III.6) and
T1|Y is spectral equivalent with T2|Y , according to Theorem
III.2, it results that T2|Y is S-decomposable, hence T2 is
strongly S-decomposable.
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[1] ALBRECHT, E.J., Funktionalkalküle in mehreren Veründerlichen, Dis-
sertation, Mainz, 1972.

[2] ALBRECHT, E.J., Funktionalkalküle in mehreren Veründerlichen für
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